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Abstract

Ensemble prediction systems typically show positive spread-error correlation, but

they are subject to forecast bias and underdispersion, and therefore uncalibrated. This

work proposes the use of ensemble model output statistics (EMOS), an easy to imple-

ment post-processing technique that addresses both forecast bias and underdispersion

and takes account of the spread-skill relationship. The technique is based on multiple lin-

ear regression and akin to the superensemble approach that has traditionally been used

for deterministic-style forecasts. The EMOS technique yields probabilistic forecasts that

take the form of Gaussian predictive probability density functions (PDFs) for continuous

weather variables, and can be applied to gridded model output. The EMOS predictive

mean is an optimal, bias-corrected weighted average of the ensemble member forecasts,

with coefficients that are constrained to be nonnegative and associated with the member

model skill. The EMOS predictive mean provides a highly accurate deterministic-style

forecast. The EMOS predictive variance is a linear function of the ensemble spread. For

fitting the EMOS coefficients, the method of minimum CRPS estimation is introduced.

The minimum CRPS estimator finds the coefficient values that optimize the contin-

uous ranked probability score (CRPS) for the training data. The EMOS technique

was applied to 48-hour forecasts of sea level pressure and surface temperature over the

North American Pacific Northwest in Spring 2000, using the University of Washington

mesoscale ensemble. When compared to the bias-corrected ensemble, deterministic-style

EMOS forecasts of sea level pressure had root-mean-square error 9% less and mean ab-

solute error 8% less. The EMOS predictive PDFs were much better calibrated than the

raw ensemble or the bias-corrected ensemble, and they were sharp in that prediction

intervals were considerably shorter on average than those obtained from climatological

forecasts. Perhaps surprisingly, the EMOS ensemble was frequently sharper than the

raw ensemble. When compared to the bias-corrected ensemble, EMOS improved the

continuous ranked probability score by 16%. It also improved the ignorance score by

3.7, corresponding to the predictive PDF at the verifying observation being greater by

a factor of 40.
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1 Introduction

During the past decade, the use of forecast ensembles for assessing the uncertainty

of numerical weather predictions has become routine. Three operational methods for

the generation of synoptic-scale ensembles have been developed: The breeding growing

modes method used by the US National Centers for Environmental Prediction (Toth and

Kalnay 1993), the singular vector method used by the European Centre for Medium-

Range Weather Forecasts (Molteni et al. 1996), and the perturbed observations method

used by the Canadian Meteorological Centre (Houtekamer et al. 1996). More recently,

mesoscale short-range ensembles have been developed, such as the University of Wash-

ington ensemble system over the North American Pacific Northwest (Grimit and Mass

2002; Eckel 2003). The ability of ensemble systems to improve deterministic-style fore-

casts and to predict forecast skill has been convincingly established. Statistically signif-

icant spread-error correlations suggest that ensemble variance and related measures of

ensemble spread are skillful indicators of the accuracy of the ensemble mean forecast.

Case studies in probabilistic weather forecasting have typically focused on the predic-

tion of categorical events. Ensembles also allow for probabilistic forecasts of continuous

weather variables, such as air pressure and temperature, that are expressed in terms

of predictive probability density functions (PDFs) or predictive cumulative distribution

functions (CDFs). Due to the limited size of current ensemble systems, which typically

consist of five to fifty ensemble member forecasts, raw ensemble output does not pro-

vide predictive PDFs, and some form of post-processing is required (Richardson 2001).

However, various challenges in the statistical post-processing of ensemble output have

been described. Systematic biases are substantial in current modeling systems (Atger

2003; Mass 2003) and might disguise probabilistic forecast skill. Furthermore, forecast

ensembles are typically underdispersive (Hamill and Colucci 1997; Eckel and Walters

1998).

In this paper, we propose the use of ensemble model output statistics (EMOS), an

easy to implement statistical post-processing technique that addresses the aforemen-

tioned issues. Our method is a variant of multiple linear regression or model output

statistics (MOS) techniques that have traditionally been used for deterministic-style and

probability of precipitation forecasts (Glahn and Lowry 1972; Wilks 1995). Specifically,
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suppose that X1, . . . , Xm denotes an ensemble of individually distinguishable forecasts

for a univariate weather quantity Y . A multiple linear regression equation for Y in terms

of the ensemble member forecasts can be written as

Y = a + b1X1 + · · · + bmXm + ε (1)

where a and b1, . . . , bm are regression coefficients, and where ε is an error term that

averages to zero. Regression approaches of this type have been shown to improve the

deterministic-style forecast accuracy of synoptic weather and seasonal climate ensembles

(Krishnamurti et al. 1999, 2000; Kharin and Zwiers 2002), and the associated forecast

systems have been referred to as superensembles.

The use of regression techniques for probabilistic forecasting has not received much

attention in the literature, with the exception of forecasts of binary events (Glahn and

Lowry 1972; Stefanova and Krishnamurti 2002). In this work, we obtain full predictive

PDFs and CDFs from ensemble forecasts of a continuous weather variable. Standard

regression theory suggests a straightforward way of constructing predictive PDFs and

CDFs from a regression equation, by taking them to be Gaussian with predictive mean

equal to the regression estimate, and predictive variance equal to the mean squared

prediction error for the training data. This approach corrects for model biases and takes

account of underdispersion. However, the resulting assessment of uncertainty is static,

in that the predictive variance is independent of the ensemble spread, thereby negating

the spread-skill relationship (Whitaker and Loughe 1998). Hence, we model the variance

of the error term in the multiple linear regression equation (1) as a linear function of

the ensemble spread, that is,

Var(ε) = c + dS2 (2)

where S2 is the ensemble variance, and where c and d are nonnegative coefficients.

Combining (1) and (2) yields the Gaussian predictive distribution

N
(
a + b1X1 + · · ·+ bmXm, c + dS2

)

whose mean equals the regression estimate and forms a bias-corrected weighted average

of the ensemble member forecasts, and whose variance depends linearly on the ensemble

spread. Negative regression weights can, and frequently do, occur in this type of formu-

lation, as in Tables 2, 4, 5, and 6 of van den Dool and Rukhovets (1994). This is an
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Table 1: Phase I of the University of Washington mesoscale short-range ensemble,
January–June 2000. Initial conditions (ICs) and lateral boundary conditions (LBCs)
were obtained from the Aviation Model (AVN), the Nested Grid Model (NGM) Re-
gional Data Assimilation System, and the Eta Data Assimilation System, all run by the
US National Centers for Environmental Prediction (NCEP), the Global Environmental
Multiscale (GEM) analysis run by the Canadian Meteorological Centre (CMC), and the
US Navy Operational Global Atmospheric Prediction System (NOGAPS) analysis run
by Fleet Numerical Meteorology and Oceanography Center (FNMOC). See Grimit and
Mass (2002) for details.

No. Ensemble Member IC/LBC Source
1 AVN-MM5 NCEP
2 GEM-MM5 CMC
3 ETA-MM5 NCEP
4 NGM-MM5 NCEP
5 NOGAPS-MM5 FNMOC

artifact caused by the collinearity of the ensemble member forecasts, and the negative

weights seem hard to interpret. They imply, all else equal, that sea level pressure, say, is

predicted to be lower when the forecast with the negative weight is higher. To address

this issue, we estimate the statistical model under the constraint that the coefficients

b1, . . . , bm, as well as c and d, are nonnegative. We refer to the resulting predictive PDFs

and CDFs as ensemble model output statistics or EMOS forecasts.

We applied the EMOS technique to the University of Washington mesoscale short-

range ensemble described by Grimit and Mass (2002). Briefly, this is a multi-analysis,

single-model (MM5) ensemble driven by initial conditions and lateral boundary con-

ditions obtained from major operational weather centers worldwide. Table 1 provides

an overview of the Phase I University of Washington ensemble system. Figure 1 illus-

trates the spread-skill relationship for sea level pressure forecasts, using the same period

January – June 2000 on which the study of Grimit and Mass (2002) was based. The

ensemble spread provides useful information about the error of the ensemble mean fore-

cast. Figure 2 gives an example of a 48-hour EMOS forecast of sea level pressure. This

forecast was initialized 0000 UTC 25 May 2000 and was valid at Hope Airport, British

Columbia. Both the EMOS predictive PDF and the EMOS predictive CDF are shown.
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Figure 1: Spread-skill relationship for ensemble mean forecasts of sea level pressure over
the Pacific Northwest, January – June 2000. For each decile of the ensemble variance,
the boxplots show the 10%, 25%, 50%, 75%, and 90% percentile of the squared forecast
error. The correlation coefficient between the ensemble spread and the squared forecast
error was 0.33 for individual forecasts, and 0.52 for daily averages aggregated across the
Pacific Northwest.

The construction of prediction intervals from the predictive CDF, say F , is straightfor-

ward. For instance, F ( 1

6
) and F (5

6
) form the lower and upper endpoint of the 66 2

3
%

central prediction interval, respectively. In the Hope Airport example, and using the

millibar as unit, this interval was [1008.3, 1013.0]. The ensemble range of the University

of Washington ensemble was [1003.7, 1016.8]. For a five-member ensemble, this is also

a nominal 662

3
% prediction interval, but is much wider. Perhaps surprisingly, this sit-

uation – EMOS prediction intervals that are shorter than their ensemble counterparts

– was not uncommon. In our case study this occurred in about 27% of the sea level

pressure forecasts.

The paper is organized as follows. In Section 2 we describe the EMOS technique in

detail, and we explain how we go about verifying probabilistic forecasts. In assessing
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Figure 2: EMOS 48-hour forecast of sea level pressure at Hope Airport, British
Columbia, initialized 0000 UTC 25 May 2000: (a) Predictive PDF. (b) Predictive CDF.
Also shown are the five ensemble member forecasts (solid and broken lines) and the
verifying observation (dotted line). The ETA-MM5 and NGM-MM5 forecasts (broken
lines) had zero EMOS weight. The unit used is the millibar (mb).

forecast PDFs, we are guided by the principle that probabilistic forecasts strive to max-

imize sharpness subject to calibration (Gneiting et al. 2003). We apply diagnostic tools,

such as the verification rank histogram and the probability integral transform (PIT)

histogram, as well as scoring rules, among them the continuous ranked probability score

(CRPS) and ignorance score. For estimating the EMOS coefficients, we introduce the

novel approach of minimum CRPS estimation, which forms a particular case of mini-

mum contrast estimation. Specifically, we find the coefficient values that minimize the

continuous ranked probability score for the training data. For EMOS, this method gives

better results than classical maximum likelihood estimation, which is nonrobust and

favors overdispersive forecast PDFs.

Section 3 provides a case study of EMOS forecasts for sea level pressure and surface

temperature in Spring 2000 over the Pacific Northwest, using the University of Washing-

ton ensemble. We explain how we find a suitable training period, and we describe and

verify the EMOS forecasts. The EMOS forecast PDFs were much better calibrated than

the raw ensemble or the bias-corrected ensemble, and the mean absolute error (MAE),

root-mean-square error (RMSE), continuous ranked probability score (CRPS), and ig-
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norance score (IGN) for the EMOS forecasts were consistently, and substantially, better

than the corresponding quantities for the raw ensemble or the bias-corrected ensemble.

The paper closes with a discussion in Section 4.

2 Methods

We now explain our approach to verifying probabilistic forecasts, and we describe the

ensemble model output statistics (EMOS) technique in detail. For estimating the EMOS

coefficients we use the novel approach of minimum CRPS estimation, which forms a

special case of minimum contrast estimation (MCE). This method is best explained in

terms of verification measures, so we describe these first.

2.1 Assessing sharpness and calibration

The goal of probabilistic forecasting is to maximize the sharpness of the forecast PDFs

subject to calibration (Gneiting et al. 2003). Calibration refers to the statistical con-

sistency between the forecast PDFs and the verifications, and is a joint property of the

predictions and the verifications. Briefly, a forecast technique is calibrated if meteoro-

logical events declared to have probability p occur a proportion p of the time on average.

Sharpness refers to the spread of the forecast PDFs and is a property of the predictions

only. A forecast technique is sharp if prediction intervals are shorter on average than

prediction intervals derived from naive methods, such as climatology or persistence. The

more concentrated the forecast PDFs are, the sharper the forecast, and the sharper the

better, subject to calibration.

The principal tool for assessing the calibration of ensemble forecasts is the verifica-

tion rank histogram or Talagrand diagram (Anderson 1996; Hamill and Colucci 1997;

Talagrand et al. 1997; Hamill 2001). To obtain a verification rank histogram, find the

rank of the verifying observation when pooled within the ordered ensemble values, and

plot the histogram of the ranks.

The analogous tool for PDF forecasts is the probability integral transform (PIT)

histogram. If F denotes the predictive CDF, the probability integral transform is simply

the value F (x) at the verification x, a number between 0 and 1. For the Hope Airport

forecast in Figure 2(b), for instance, the PIT value was 0.15. Rosenblatt (1952) studied
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the probability integral transform, and Dawid (1984) proposed its use in the assessment

of probabilistic forecasts. The PIT histogram – that is, the histogram of the PIT values

– is a commonly used tool in the econometric literature on probabilistic forecasting

(see, for instance, Weigend and Shi 2000). Its interpretation is the same as that of the

verification rank histogram: Calibrated probabilistic forecasts yield PIT histograms that

are close to uniform, while underdispersive forecasts result in U-shaped PIT histograms.

How can ensembles and PDF forecasts be fairly compared? An ensemble provides

a finite, typically small, number of values only, while PDF forecasts give continuous

statements of uncertainty; so this seems difficult. There are two natural approaches to a

fair comparison, using either the verification rank histogram or the PIT histogram. To

obtain an m-member ensemble from a PDF forecast, take the CDF quantiles at levels
i

m+1
, for i = 1, . . . , m. The verification rank histogram can then be formed in the usual

way. To obtain a PIT histogram from an ensemble, fit a PDF to each ensemble forecast,

as proposed by Déqué et al. (1994), Wilson et al. (1999), and Grimit and Mass (2004).

The standard ensemble smoothing approach of Grimit and Mass (2004) fits a normal

distribution with mean equal to the ensemble mean and variance equal to the ensem-

ble variance. The PIT value is then computed on the basis of the fitted Gaussian CDF.

Wilks (2002) proposed to smooth forecast ensembles by fitting mixtures of Gaussian dis-

tributions, an approach that allows for multimodal forecast PDFs. Multimodality may

indeed be an issue for larger ensembles. For smaller ensembles, such as the University

of Washington ensemble, standard ensemble smoothing using a single normal density

suffices.

In addition to showing verification rank histograms and PIT histograms, we report

the coverage of the 66 2

3
% central prediction interval; we chose this interval, because the

range of a five-member ensemble provides such. Finally, to assess sharpness, we consider

the average width of the 66 2

3
% prediction intervals. For a five-member ensemble, this is

just the average ensemble range.

For Gaussian predictive PDFs, the average width of the 100 × (1 − α)% prediction

intervals is

2z1−α

2
s̄ (3)

where z1−α

2
denotes the (1 − α

2
) quantile of the normal distribution with mean 0 and

variance 1, respectively, and where s̄ stands for the average standard deviation of the
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predictive PDFs. For instance, Table 2 below shows that the average width of the central

662

3
% prediction intervals for MCE-EMOS forecasts of sea level pressure is 4.747. From

(3) with α = 1

3
we find that s̄ = 2.45. Using again (3), the average width of the 50%

and 90% central prediction intervals is 3.31 and 8.08, respectively.

2.2 Scoring rules

Scoring rules for the verification of deterministic-style forecasts are well-known and have

been widely used in forecast assessment. If µi denotes a deterministic-style forecast and

yi is the verification, the mean absolute error (MAE) is defined as

MAE =
1

n

n∑

i=1

|yi − µi|

where the sum is taken over the test data. A related error measure is the mean-square

error (MSE), defined by

MSE =
1

n

n∑

i=1

(yi − µi)
2 .

The root-mean-square error (RMSE) is the square root of the MSE and has the advantage

of being recorded in the same unit as the verifications.

We also consider two scoring rules for the assessment of predictive PDFs, the contin-

uous ranked probability score (Unger 1985; Hersbach 2000; Gneiting and Raftery 2004),

and the ignorance score (Good 1952; Roulston and Smith 2002). These scoring rules are

attractive in that they address calibration as well as sharpness.

The continuous ranked probability score (CRPS) is the integral of the Brier scores

at all possible threshold values t for the continuous predictand (Hersbach 2000; Toth

et al. 2003, Section 7.5.2). Specifically, if F is the predictive CDF and y verifies, the

continuous ranked probability score is defined as

crps(F, y) =
∫

∞

−∞

(F (t) − H(t − y))2 dt (4)

where H(t−y) denotes the Heaviside function and takes the value 0 when t < y and the

value 1 otherwise. Applications of the continuous ranked probability score have been

hampered by a lack of closed form expressions for the associated integral. However,
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when F is the CDF of a normal distribution with mean µ and variance σ2, repeated

partial integration in (4) shows that

crps(N (µ, σ2), y) = σ

(
y − µ

σ

(
2 Φ

(
y − µ

σ

)
− 1

)
+ 2 ϕ

(
y − µ

σ

)
− 1√

π

)
(5)

where ϕ and Φ denote the PDF and the CDF, respectively, of the normal distribution

with mean 0 and variance 1. A key difference between the ignorance score and the con-

tinuous ranked probability score is that (5) grows linearly in the normalized prediction

error, z = (y − µ)/σ, while (8) grows quadratically in z. Hence, the ignorance score as-

signs harsh penalties to particularly poor probabilistic forecasts, and can be exceedingly

sensitive to outliers and extreme events (Weigend and Shi 2000; Gneiting and Raftery

2004). This will become apparent in Tables 5 and 7 below. Returning to the continuous

ranked probability score, we note from (4) that the average score

CRPS =
1

n

n∑

i=1

crps(Fi, yi) (6)

reduces to the MAE if each Fi is a deterministic-style forecast. For this and other

reasons, the CRPS can be interpreted as a probabilistic version of the MAE.

The ignorance score is the negative of the logarithm of the predictive density f at

the verifying value y, that is, for a single PDF forecast,

ign(f, y) = − log f(y). (7)

Roulston and Smith (2002) provide an interesting information theoretic perspective on

the ignorance score. In the case of a normal predictive PDF with mean µ and variance

σ2, we have

ign(N (µ, σ2), y) =
1

2
ln(2πσ2) +

(y − µ)2

2σ2
(8)

and the average ignorance is

IGN =
1

n

n∑

i=1

ign(Fi, yi) =
1

n

n∑

i=1

(
1

2
ln(2πσ2

i
) +

(yi − µi)
2

2σ2
i

)
. (9)

When interpreting improvements in the IGN score, it is absolute rather than relative

changes that are relevant. An improvement of ∆ in the IGN score corresponds to an

increase in the predictive PDF at the verifying values by a factor of e∆.
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Both CRPS and IGN are negatively oriented scores, in that a smaller value is better,

and both scores are proper, meaning that they reward honest assessments. We report

both scores, but in view of the lack of robustness of the ignorance score, we prefer the

continuous ranked probability score. A more detailed discussion of scoring rules is given

in Gneiting and Raftery (2004).

2.3 Ensemble model output statistics and minimum CRPS es-

timation

We now describe the ensemble model output statistics (EMOS) method. Suppose that

X1, . . . , Xm denotes an ensemble of forecasts for a univariate weather quantity Y , and

let S2 be the ensemble variance. The EMOS predictive PDF is that of the normal

distribution

N
(
a + b1X1 + · · · + bmXm, c + dS2

)
. (10)

The EMOS predictive mean a+b1X1 + · · ·+bmXm is an optimal bias-corrected weighted

average of the ensemble member forecasts. It provides a highly accurate deterministic-

style forecast. The EMOS predictive variance c+dS2 is a linear function of the ensemble

spread. The regression coefficients b1, . . . , bm in (10) reflect the individual member model

skill. Stefanova and Krishnamurti (2002) argue similarly in a superensemble context,

but they do not constrain the regression coefficients b1, . . . , bm to be nonnegative. The

variance coefficients c and d can be interpreted in terms of the ensemble spread and

the skill of the ensemble mean forecast. All else equal, larger values of the coefficient d

suggest a more pronounced spread-skill relationship. If spread and error are independent

of each other, the coefficient d will be estimated as negligibly small. Hence, EMOS is

robust, in the sense that it adapts to the presence as well as to the absence of significant

spread-error correlation.

A classical technique for estimating the coefficients a, b1, . . . , bm, c, and d from train-

ing data is maximum likelihood (Wilks 1995, Section 4.7). The likelihood function is

defined as the probability of the training data given the coefficients, viewed as a function

of the coefficients. In practice, it is more convenient to maximize the logarithm of the

likelihood function, for reasons of both algebraic simplicity and numerical stability. The
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log-likelihood function for the statistical model (10) is

`
(
a; b1, . . . , bm; c; d

)
(11)

= −1

2

(
k log(2π) +

k∑

i=1

(Yi − (a + b1Xi1 + · · ·+ bmXim))2

c + dS2
i

+
k∑

i=1

log
(
c + dS2

i

))

where the sum is taken over the training data; here, Xi1, . . . , Xim denote the ith ensemble

forecast in the training set, S2
i

denotes its variance, and Yi denotes the ith verification,

respectively. Strictly speaking, (11) is the log-likelihood function under the assumption

of independence. Note that the log-likelihood (11) is essentially the negative of the

ignorance score (9), but is applied to the training data rather than the test data. Hence,

maximum likelihood estimation is equivalent to minimizing the ignorance score for the

training data.

This observation suggests a general estimation strategy: Pick a scoring rule that is

relevant to the problem at hand, express the score for the training data as a function

of the coefficients, and optimize that function with respect to the coefficient values. We

take scoring rules to be negatively oriented, so a smaller value is better, and we minimize

the training score. For positively oriented scoring rules, we would maximize the training

score. Such an approach is formally equivalent to minimum contrast estimation (MCE),

a technique that has been studied in the theoretical statistics literature (Pfanzagl 1969,

Birgé and Massart 1993). The minimum score approach can also be interpreted within

the framework of robust M-estimation (Huber 1964; Huber 1981, Section 3.2) and forms

a special case thereof, in that the function to be optimized derives from a strictly proper

scoring rule (Gneiting and Raftery 2004). A more detailed methodological and the-

oretical discussion is beyond the scope of this paper. However, we compared EMOS

PDF forecasts estimated by MCE with the continuous ranked probability score, as de-

scribed below, to EMOS PDF forecasts estimated by maximum likelihood. The former

performed clearly better: the predictive PDFs were better calibrated, and they were

sharper. This comparison is summarized in Table 2. As a rule of thumb, it seems that

predictive PDFs estimated by maximum likelihood tend to be overdispersive, resulting

in unnecessarily wide prediction intervals that have higher than nominal coverage, and

in inverted U-shaped PIT histograms. This latter shape is also seen in Figures 4 and 5 of

Weigend and Shi (2000), who estimate predictive densities by the maximum likelihood

method in the form of the EM algorithm.
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Table 2: Comparison of EMOS predictive PDFs obtained by maximum likelihood es-
timation (MLE-EMOS) and minimum CRPS estimation (MCE-EMOS), respectively.
The results are for the test data, region, and 40-day sliding training period described in
Section 3.

Score Score 66 2

3
% Prediction
Interval

Average
MAE RMSE CRPS IGN Coverage Width

Sea level pressure
MLE-EMOS 1.958 2.496 1.391 2.323 69.41 4.931
MCE-EMOS 1.953 2.487 1.389 2.326 67.61 4.747

Surface temperature
MLE-EMOS 2.239 2.914 1.614 2.490 72.69 5.909
MCE-EMOS 2.230 2.906 1.606 2.488 68.57 5.411

We argued in Section 2.2 that the continuous ranked probability score (CRPS) is

a more robust and therefore more appropriate scoring rule than the ignorance score.

This suggests the use of the continuous ranked probability score in minimum contrast

estimation; and this might be called minimum CRPS estimation. The minimum CRPS

estimator finds the coefficients a, b1, . . . , bm, c, and d in the statistical model (10) that

minimize the CRPS value for the training data. Using (5) and (6), we express the

training CRPS as an analytic function of the coefficients, namely

Γ
(
a; b1, . . . , bm; c; d

)
=

1

k

k∑

i=1

(
c + dS2

i

)(
Zi

(
2 Φ(Zi) − 1

)
+ 2 ϕ(Zi) −

1√
π

)
(12)

where

Zi =
(Yi − (a + b1Xi1 + · · ·+ bmXim))2

c + dS2
i

is a standardized forecast error, and where ϕ and Φ denote the PDF and CDF, respec-

tively, of a normal distribution with mean 0 and variance 1. We find the coefficient values

that minimize (12) numerically, using the Broyden-Fletcher-Goldfarb-Shanno algorithm

(Press et al. 1992, Section 10.7) as implemented in the R language and environment

(www.cran.r-project.org/). The optimization algorithm requires initial values, and one

way of specifying them is by least squares estimation for the standard multiple linear
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regression model (1). In the sliding window implementation of Section 3, we use the

previously estimated EMOS coefficients as initial values in the subsequent optimization

problem.

How do we constrain the coefficients b1, . . . , bm, c, and d to be nonnegative? The

nonnegativity of the variance term c is not an issue. To enforce the nonnegativity of d,

we set d = δ2 and optimize over δ; this turned out to be numerically stable. To enforce

nonnegative regression coefficients, we proceed stepwise. We first find the unconstrained

minimum of the CRPS value (12). If all estimated regression coefficients are nonnegative,

the EMOS model is complete. If one or more of the regression coefficients are negative,

we set these to zero, and we minimize the CRPS value (12) under that constraint. We

also re-compute the ensemble variance, using only the ensemble members that remain

in the regression equation, and we subsequently use the re-computed ensemble spread.

This procedure is iterated until all estimated regression coefficients are nonnegative.

Table 3 illustrates this algorithm for predictions on 25 May 2000, the day on which

the Hope Airport forecast in Figure 2 was issued. The initial, unconstrained minimiza-

tion of the CRPS value (12) uses the EMOS coefficients from the previous fit as initial

values. This results in a negative coefficient for the third ensemble member model, the

ETA-MM5 forecast. We set this coefficient to zero and proceed with the constrained

minimization, resulting in a negative weight for the NGM-MM5 forecast. The final

EMOS equation uses only one of the three ensemble members initialized with NCEP

models, namely the AVN-MM5 forecast, along with the GEM-MM5 forecast, and the

NOGAPS-MM5 forecast. The EMOS weights reflect the relative skill of the ensemble

member models during the 40-day training period. Indeed, the bias-corrected AVN-

MM5, GEM-MM5, and NOGAPS-MM5 forecasts had a smaller training RMSE than the

bias-corrected ETA-MM5 and NGM-MM5 forecasts. The AVN-MM5, ETA-MM5, and

NGM-MM5 forecasts were initialized by NCEP models, and they were highly collinear.

For the training period, the pair correlation coefficients within this group ranged from

0.93 to 0.97. EMOS picked and retained the most skillful among the three collinear fore-

casts. The correlation coefficients between NCEP- and non NCEP-initialized member

model forecasts were also high, but they reached at most 0.92. The estimated variance

coefficient d turned out to be negligibly small, thereby indicating a weak spread-skill

relationship during the training period. Indeed, the correlation coefficient between the
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Table 3: Minimum CRPS estimation of the EMOS coefficients for the Hope Airport
forecast PDF in Figure 2. The regression coefficients b1, . . . , b5 correspond to the AVN-
MM5, GEM-MM5, ETA-MM5, NGM-MM5, and NOGAPS-MM5 forecast, respectively.

a b1 b2 b3 b4 b5 c d
Initial values 126.31 0.31 0.34 0.00 0.00 0.24 6.22 0.00
First stage 131.27 0.37 0.36 −0.17 0.02 0.29 5.77 0.00
Second stage 143.23 0.35 0.33 — −0.09 0.28 5.81 0.00
EMOS 130.34 0.31 0.31 — — 0.25 5.88 0.00

ensemble spread and the squared error of the ensemble mean forecast was only 0.11

for the 40-day training period that we used, as compared to 0.33 for the entire period,

January–June 2000. The resulting EMOS predictive PDF is Gaussian, and is straight-

forward to simulate from. An alternative, and likely preferable, way of forming an

m-member ensemble from the predictive PDF is by taking the forecast quantiles at level
i

m+1
, for i = 1, . . . , m, respectively. In this way, ensembles of any size can be obtained,

and in this sense, EMOS can be viewed as a dressing method (Roulston and Smith

2002).

It is worth pointing out that the EMOS model (10) can be estimated under further

constraints. The general formulation requires that the ensemble members come from

individually distinguishable sources. This is true for the University of Washington en-

semble, a multi-analysis, mesoscale, short-range ensemble, and also for poor person’s

and multi-model ensembles. If the linear regression is based on the ensemble mean only,

which constrains the regression coefficients b1 = · · · = bm in (10) to be equal, EMOS

can be applied to essentially all ensemble systems, including perturbed observations,

singular vector, and bred ensembles. Jewson et al. (2003) applied such an approach to

the synoptic ECMWF ensemble, using maximum likelihood estimation. However, they

did not report out of sample forecasts, and consequently neither verification scores nor

rank histograms. For the University of Washington ensemble, the general formulation

seems preferable. In the situation of Table 2, constraining the regression coefficients in

(10) to be equal, that is, using the ensemble mean only, results in MAE, RMSE, and

CRPS scores up to 7% worse, as compared to the full formulation.
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3 Results for the University of Washington ensem-

ble over the Pacific Northwest

We now give the results of applying EMOS to 48-hour forecasts of sea level pressure

and surface temperature over the northwestern United States and British Columbia,

using Phase I of the University of Washington ensemble described by Grimit and Mass

(2002). The University of Washington ensemble system is a mesoscale, short-range

ensemble based on the Fifth-generation Pennsylvania State University – National Center

for Atmospheric Research Mesoscale Model (PSU-NCAR MM5) and forms an integral

part of the Pacific Northwest regional environmental prediction effort (Mass et al. 2003).

The ensemble used a 0000 UTC cycle and was in operation on 102 days between 12

January 2000 and 30 June 2000; it is described in Table 1. During this period, there were

16,015 and 56,489 verifying observations of sea level pressure and surface temperature,

respectively. Model forecast data at the four grid points surrounding each observation

were bilinearly interpolated to the observation site (Grimit and Mass 2002). When we

talk of a 40-day training period, say, we refer to the most recent 40 days for which

ensemble output and verifying observations were available. In terms of calendar days,

this period typically corresponds to more than 40 days.

3.1 Length of training period

What training period should be used for estimating the EMOS regression coefficients

and variance parameters? There is a trade-off here. Shorter training periods allow to

adapt rapidly to seasonally varying model biases, changes in the performance of the

ensemble member models, and changes in environmental conditions. On the other hand,

longer training periods reduce the statistical variability in the estimation of the EMOS

coefficients. We considered training periods of 19, 20, . . . , 62 days for forecasts of sea

level pressure. For comparability, the same test set was used in assessing all the training

periods, that is, the first 63 days on which the ensemble was operating were not included

in the test data. The unit used for the sea level pressure forecasts is the millibar (mb).

The results of this experiment are summarized in Figure 3. Figures 3(a) and 3(b)

show the mean absolute error (MAE) and root-mean-square error (RMSE) of the deter-

ministic-style EMOS forecasts, respectively. These decrease sharply for training periods
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Figure 3: Comparison of training period lengths for forecasts of sea level pressure over
the Pacific Northwest: (a) MAE of EMOS deterministic-style forecasts. (b) RMSE
of EMOS deterministic-style forecasts. (c) Continuous ranked probability score. (d)
Ignorance score. (e) Coverage of 66 2
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18



less than 30 days, stay about constant for training periods between 30 and 45 days,

and increase thereafter. Figures 3(c) and 3(d) show the continuous ranked probability

score (CRPS) and the ignorance score (IGN). The patterns are similar to those for the

MAE and the RMSE. The coverage of EMOS 66 2

3
% prediction intervals is shown in

Figure 3(e). Training periods under 30 days seem to result in underdispersive PDFs,

but training periods between 30 and 60 days show close to nominal coverage. Figure 3(f)

shows the average widths of the 66 2

3
% prediction intervals. The average width increases

with the length of the training period, but is about constant for training periods between

30 and 40 days.

To summarize these results, there appear to be substantial gains in increasing the

training period beyond 30 days. As the training period increases beyond 45 days, the

skill of the probabilistic forecasts declines slowly but steadily, presumably as a result of

seasonally varying model biases. In view of our goal of maximizing sharpness subject

to calibration, we chose a 40-day training period. This worked well for temperature

forecasts, too. However, distinct training periods might work best for distinct variables,

forecast horizons, time periods, and regions. Ideally, we would include training data

from previous years to address seasonal effects. Further research in this direction is

desirable as multi-year runs of stable mesoscale ensembles become available.

3.2 Sea level pressure forecasts

We now give the results for EMOS forecasts of sea level pressure, using a 40-day sliding

training period and the same test set that was used to compare the different training

periods. We also summarize the results for the bias-corrected ensemble member forecasts

and for a climatological forecast. The bias-corrected ensemble member forecasts were

obtained by simple linear regression, estimated on the same 40-day sliding training

period. The deterministic-style climatological forecast was the average sea level pressure

among the verifying observations in the training period, and the climatological predictive

PDF was obtained by fitting a normal PDF to the training data.

Figure 4 shows the estimates of the EMOS coefficients, as they evolve over the test

period. The estimated intercept in the multiple linear regression equation is shown in

Figure 4(a). Figures 4(b), (c), (d), (e), and (f) show the EMOS weights for the five

ensemble member models, respectively. The weights for the AVN-MM5, CMC-MM5,
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Figure 4: Coefficient estimates for EMOS forecasts of sea level pressure over the Pacific
Northwest. (a) Intercept. (b), (c), (d), (e), and (f): Member model weights. (g) and
(h): Variance terms c and d.

and NOGAPS-MM5 forecasts were consistently substantial, and the weights for the

ETA-MM5 and NGM-MM5 forecasts were consistently negligible or zero. This is a

collinearity effect, very much like the effect described in Section 2.3. EMOS retains

only one of the three highly collinear ensemble member models that were initialized by

NCEP analyses and picks the most skillful of them, namely the AVN-MM5 forecast.

Figures 4(f) and 4(g) show the estimated variance coefficients c and d, respectively. The

estimates of c decreased during the test period, thereby indicating improved ensemble

skill or improved atmospheric predictability, or both. The values of d were small but

mostly nonzero. The increase toward the end of the test period suggests a strengthening
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of the spread-skill relationship.

Table 4 provides summary measures of deterministic-style forecast accuracy. Among

the raw ensemble member models, the AVN-MM5 forecast performed best. Bias cor-

rection resulted in a reduction of the RMSE for the ensemble member model forecasts

between 4% and 17%. The improvement was most pronounced for the NOGAPS-MM5

forecast. The AVN-MM5, CMC-MM5, and NOGAPS-MM5 forecasts were more accu-

rate than the ETA-MM5 and NGM-MM5 forecasts. This confirms our interpretation

of the EMOS weights in terms of the individual member model skill. The ensemble

mean forecast performed considerably better than any of the ensemble member mod-

els. However, the bias-corrected AVN-MM5 forecast and the bias-corrected NOGAPS-

MM5 forecast were more accurate than the mean of the bias-corrected ensemble. The

deterministic-style EMOS forecast clearly performed best and had RMSE 9% and 8% less

when compared to the mean of the raw ensemble and to the mean of the bias-corrected

ensemble, respectively. The results in terms of the mean absolute error (MAE) were

similar.

Table 5 turns to summary measures of probabilistic forecast skill. The climatological

predictive PDFs showed the correct coverage, but they were too spread out to be com-

petitive. The bias-corrected ensemble shows reduced ensemble spread, but is even more

underdispersive than the raw ensemble. The EMOS prediction intervals show accurate

coverage. The continuous ranked probability score (CRPS) and the ignorance score

(IGN) were computed as described in Section 2.2, using standard ensemble smooth-

ing for the raw and bias-corrected ensemble, respectively. The CRPS score can also

be computed directly, by using the empirical ensemble CDF, which takes the values

0, 1

5
, . . . , 4

5
, 1, with jumps at the ensemble member forecasts. This gave somewhat higher

CRPS values of 1.69 and 1.72 for the raw ensemble and for the bias-corrected ensemble,

respectively. The EMOS predictive PDFs had by far the best scores among the different

forecasts. When compared to the bias-corrected ensemble, EMOS reduced the CRPS

score by 16%. EMOS reduced the IGN score by 3.68 points, indicating that the predic-

tive PDF of verifying observations increased by a factor of 40. The EMOS prediction

intervals were not much wider than prediction intervals obtained from the raw ensem-

ble. A more detailed analysis shows, perhaps surprisingly, that in 27% of the forecasts

the EMOS 662

3
% prediction interval was shorter than the range of the five-member raw
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Table 4: Comparison of deterministic-style forecasts of sea level pressure over the Pacific
Northwest. The climatological, bias-corrected, and EMOS forecasts were trained on a
sliding 40-day period.

MAE RMSE
Climatological forecast 4.72 5.83
AVN-MM5 2.20 2.90
GEM-MM5 2.35 3.00
ETA-MM5 2.50 3.25
NGM-MM5 2.70 3.40
NOGAPS-MM5 2.50 3.21
AVN-MM5 bias-corrected 2.10 2.68
GEM-MM5 bias-corrected 2.24 2.88
ETA-MM5 bias-corrected 2.37 3.14
NGM-MM5 bias-corrected 2.48 3.23
NOGAPS-MM5 bias-corrected 2.10 2.66
Mean of raw ensemble 2.11 2.73
Mean of bias-corrected ensemble 2.08 2.69
EMOS forecast 1.95 2.49

ensemble. In 9% of the forecasts, the EMOS 66 2

3
% prediction interval was shorter than

the range of the bias-corrected ensemble.

The verification rank histograms for the raw ensemble, the bias-corrected ensemble,

and the EMOS ensemble are shown in Figure 5. The EMOS ensemble was much better

calibrated than the raw ensemble or the bias-corrected ensemble. Its rank histogram is

close to being uniform but not quite uniform; indeed, the latter was not to be expected.

Sea level pressure is a synoptic variable with strong spatial correlation throughout the

ensemble domain, and there were only 39 days in the evaluation period. The probability

integral (PIT) histograms in Figure 6 accentuate the underdispersion in the raw ensemble

and the bias-corrected ensemble.

3.3 Temperature forecasts

We now summarize the results for forecasts of surface temperature, a case of primary

interest to the public (Murphy and Winkler 1979). The 2-m temperature forecasts were
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Table 5: Comparison of predictive PDFs for sea level pressure over the Pacific Northwest.
The bias-corrected ensemble and the EMOS forecasts were trained on a sliding 40-day
period.

662

3
% Prediction Score
Interval

Average
Coverage Width CRPS IGN

Climatological forecast 67.0 11.83 3.32 3.19
Raw ensemble 53.9 3.93 1.61 4.84
Bias-corrected ensemble 40.7 2.77 1.66 6.01
EMOS forecast 67.6 4.75 1.39 2.33

obtained as an average of the predicted lowest sigma level temperature and the predicted

ground temperature. Similar to the sea level pressure forecasts, we used a sliding 40-

day training period, and we considered the same region and the same test period. We

omit the results for the climatological forecast which is even less competitive than for sea

level pressure, given seasonal and topographic effects. The unit used for the temperature

forecasts is degrees Kelvin.

Figure 7 shows how the estimates of the EMOS coefficients evolve over the test period.

Figure 7(a) shows the estimated intercept which is consistently small and negative.

Figures 7(b), (c), (d), (e), and (f) show the estimated EMOS weights, respectively. The

weights for the AVN-MM5 forecast reached a maximum of 0.61 and were consistently

the highest among the five ensemble member models. The weights for the ETA-MM5

forecast and for the NOGAPS-MM5 forecast were smaller but still substantial; those for

the NGM-MM5 forecast were generally negligible or zero; and the weights for the GEM-

MM5 forecast were initially negligible, before increasing to substantial levels. These

results can be interpreted in terms of collinearity and ensemble member model skill.

The correlation coefficient between the ETA-MM5 and the NGM-MM5 forecasts was

the highest among the forecast pairs. To avoid collinearity, EMOS retained only one of

them. The AVN-MM5 forecast was the most accurate member model and received the

highest EMOS weights. Figures 7(f) and 7(g) show the estimated variance coefficients c

and d, respectively. The estimates of d were consistently substantial.
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Figure 5: Verification rank histograms for ensemble forecasts of sea level pressure over
the Pacific Northwest: (a) Raw ensemble. (b) Bias-corrected ensemble. (c) EMOS
ensemble.

Table 6 confirms that the AVN-MM5 forecast was the most accurate among the en-

semble member forecasts, both before and after bias correction. Bias correction resulted

in percentage improvements in the RMSE of the ensemble member forecasts between 4%

and 14%, and the NOGAPS-MM5 forecast showed the highest percentage improvement.

The results in terms of the MAE were similar. The deterministic-style EMOS forecast

was the most accurate, even though the percentage improvement over the bias-corrected

ensemble was less pronounced than for forecasts of sea level pressure.

We now turn to a discussion of probabilistic forecast skill. Table 7 shows that the

bias-corrected ensemble was slightly better calibrated than the raw ensemble. However,

both the raw ensemble and the bias-corrected ensemble were strikingly underdispersive,

and this was reflected in the CRPS and IGN scores, which were computed on the basis

of standard ensemble smoothing. When computed directly from the ensemble CDF, the

CRPS scores for the raw ensemble and for the bias-corrected ensemble were 2.13 and

1.95, respectively. The EMOS forecast performed best, with a CRPS score that was

15% lower than for the bias-corrected ensemble, and an IGN score that was 13 points

lower. The verification rank histograms and PIT histograms are shown in Figures 8 and

9. The PIT histograms accentuate the underdispersion of the ensemble forecasts, while
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Figure 6: Probability integral transform (PIT) histograms for PDF forecasts of sea level
pressure over the Pacific Northwest: (a) Smoothed ensemble forecast. (b) Bias-corrected
smoothed ensemble forecast. (c) EMOS forecast.

the histograms for the EMOS ensemble are close to being uniform.

4 Discussion

It is well documented in the literature that multiple regression or superensemble tech-

niques improve the deterministic-style forecast accuracy of ensembles systems (Krish-

namurti et al. 1999, 2000; Kharin and Zwiers 2002). Regression-based forecasts correct

for model biases and therefore are more accurate than the ensemble mean forecast. The

novelty of our ensemble model output statistics (EMOS) approach is three-fold. We

constrain the regression coefficients to be nonnegative, thereby allowing for a more di-

rect interpretation of the EMOS coefficients in terms of ensemble member model skill.

EMOS identifies ensemble members whose relative contributions are negligible, typically

as a result of collinearity. The method ignores those members when finding the EMOS

predictive mean, an optimal bias-corrected weighted average of the ensemble member

forecasts that provides a highly accurate deterministic-style forecast. For estimating

the EMOS coefficients, we use the novel method of minimum CRPS estimation. Fi-

nally, we apply linear regression techniques to obtain full predictive PDFs, rather than
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(f) NOGAPS−MM5 Forecast

Day Index

E
M

O
S

 W
ei

gh
t

0 10 20 30 40

5.
0

5.
5

6.
0

6.
5

7.
0

7.
5

8.
0

(g) Variance Term c

Day Index

C
oe

ffi
ci

en
t V

al
ue

0 10 20 30 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(h) Variance Term d

Day Index

C
oe

ffi
ci

en
t V

al
ue

Figure 7: Coefficient estimates for EMOS forecasts of surface temperature over the
Pacific Northwest. (a) Intercept. (b), (c), (d), (e), and (f): Member model weights. (g)
and (h): Variance terms c and d.

deterministic-style forecasts, for continuous weather variables. The EMOS predictive

PDFs are Gaussian, and they take account of the spread-skill relationship, in that the

predictive variance is a linear function of the ensemble spread. However, EMOS adapts

to the absence of spread-error correlation, by estimating the variance coefficient d as

negligibly small. Monte Carlo simulation from the Gaussian predictive PDF is straight-

forward, and forecast ensembles of any size can be generated. An alternative, and likely

preferable, way of forming an m-member ensemble from the predictive PDF is by taking

the forecast percentiles at level i

m+1
× 100%, for i = 1, . . . , m.

We applied the EMOS technique to sea level pressure and surface temperature fore-
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Table 6: Comparison of deterministic-style forecasts of surface temperature over the
Pacific Northwest. The climatological, bias-corrected, and EMOS forecasts were trained
on a sliding 40-day period.

MAE RMSE
AVN-MM5 2.45 3.15
GEM-MM5 2.64 3.40
ETA-MM5 2.52 3.23
NGM-MM5 2.56 3.28
NOGAPS-MM5 2.96 3.76
AVN-MM5 bias-corrected 2.31 3.00
GEM-MM5 bias-corrected 2.48 3.24
ETA-MM5 bias-corrected 2.39 3.10
NGM-MM5 bias-corrected 2.42 3.13
NOGAPS-MM5 bias-corrected 2.50 3.25
Mean of raw ensemble 2.49 3.18
Mean of bias-corrected ensemble 2.28 2.95
EMOS forecast 2.23 2.91

casts over the North American Pacific Northwest in Spring 2000, using the University of

Washington mesoscale ensemble (Grimit and Mass 2002). The EMOS predictions were

more accurate when compared to the member model forecasts, bias-corrected mem-

ber model forecasts, the ensemble mean forecast, and the ensemble mean of the bias-

corrected member models. We also assessed the probabilistic forecast skill of the EMOS

predictive PDFs. When compared to the bias-corrected ensemble, EMOS PDF forecasts

of sea level pressure had substantially better CRPS and IGN scores. The EMOS PDFs

were much better calibrated than the raw ensemble or the bias-corrected ensemble, and

they were sharp, in that EMOS prediction intervals were much shorter on average than

prediction intervals based on climatology. Perhaps surprisingly, the EMOS forecasts of

sea level pressure were frequently sharper than the raw ensemble forecasts. With small

modifications, as explained in Section 2.3, EMOS applies to all ensemble systems, in-

cluding weather and climate, synoptic-scale, poor person’s, multi-model, multi-analysis,

perturbed observations, singular vector, and bred ensembles. EMOS can be applied to

gridded ensemble output, thereby providing probabilistic forecasts on a grid. The re-
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Table 7: Comparison of predictive PDFs for surface temperature over the Pacific North-
west. The bias-corrected ensemble and the EMOS forecasts were trained on a sliding
40-day period.

662

3
% Prediction Score
Interval

Average
Coverage Width CRPS IGN

Raw ensemble 28.7 2.55 2.07 21.45
Bias-corrected ensemble 31.1 2.44 1.89 15.50
EMOS forecast 68.6 5.41 1.61 2.49

sulting forecast fields can be visualized in the form of percentile maps, as in Figure 5 of

Raftery et al. (2003). In our experiment, we used observations to estimate the EMOS

coefficients, but this could also be done using an analysis.

Bias correction results in more accurate deterministic-style forecasts, and bias correc-

tion reduces ensemble spread, by pulling the individual member model forecasts towards

the verification mean (Eckel 2003). Verification rank histograms typically become more

symmetric after bias correction, as in our Figure 8, or in Figure 46 of Eckel (2003).

However, bias correction does not result in improved calibration, and the need for sta-

tistical post-processing remains. We anticipate significant improvements in probabilistic

forecast skill through the use of advanced bias correction schemes, followed by statistical

post-processing of the bias-corrected member model ensemble. Further research in this

direction is desirable.

We close with a discussion of potential extensions as well as limitations of the EMOS

technique. The predictive PDFs produced by the EMOS method are Gaussian and

therefore unimodal. This is unlikely to be a disadvantage for a five-member ensemble,

such as the University of Washington ensemble that we considered. However, larger

ensembles occasionally suggest multimodal forecast PDFs. The ensemble smoothing

approach of Wilks (2002) and the Bayesian model averaging approach of Raftery et

al. (2003) address this issue.

We obtained EMOS forecasts of sea level pressure and surface temperature. These

are variables for which the forecast error distributions are approximately Gaussian. The
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(c) EMOS Ensemble

Figure 8: Verification rank histograms for ensemble forecasts of surface temperature
over the Pacific Northwest: (a) Raw ensemble. (b) Bias-corrected ensemble. (c) EMOS
ensemble.

forecast error distributions for other variables, such as precipitation or cloud-cover, are

unlikely to be close to normal. Wilks (2002) proposes ways of transforming forecast

ensembles to Gaussian distributions, and EMOS can be applied to the transformed en-

semble. Another approach uses the framework of generalized linear models (McCullagh

and Nelder 1989), and this remains to be explored.

Our method produces predictive PDFs of continuous weather variables at a given

location, but it does not reproduce the spatial correlation patterns of observed weather

fields. Gel et al. (2004) suggest a way of creating ensembles of entire weather fields,

each of which honors the spatial correlation structure of verifying fields. However, this

approach uses only one numerical weather prediction model rather than an ensemble of

forecasts. This method could be combined with EMOS to yield calibrated ensembles

of entire weather fields, by simulating correlated error fields and adding them to the

spatially varying predictive mean of the EMOS forecasts. Such an approach could also

be viewed as a dressing method (Roulston and Smith 2003). A different, somewhat

simplistic idea is what might be called a probability field ensemble, that is, an ensemble of

m, say m = 5, weather fields showing the percentiles of the EMOS predictive distribution

function at the levels i

m+1
× 100% for i = 1, . . . , m, respectively. Probability field
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(c) EMOS Forecast

Figure 9: Probability integral transform (PIT) histograms for PDF forecasts of surface
temperature over the Pacific Northwest: (a) Smoothed ensemble forecast. (b) Bias-
corrected smoothed ensemble forecast. (c) EMOS forecast.

ensembles do not reproduce the spatial correlation structure of observed weather fields,

nor do they take account of dynamical features. However, a probability field ensemble

could be interpreted as a sample of equally likely weather fields, with respect to any

fixed location, which may facilitate the interpretation, and may foster the acceptance

and the use of probabilistic forecasts.
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